热度 51||
极限概念是微积分的起点。说起极限概念的历史,学数学的都多少颇为伤感。
很久很久以前,西出阳关无踪影的老子就体验到,“一尺之竿,日取其半,万世不竭。”
近两千年前,祖氏父子分别用园的内接正6n边形周长替带园周长以计算园周率;用分割曲边梯形为n个窄曲边梯形,进而把窄曲边梯形看成矩形来计算其面积。他们都体验到,“割而又割,即将n取得越来越大,就能得到越来越精确的园周率值或面积。”
国人朴实的体验延续了一千多年,最终没有思维升华得到极限概念。而牛顿就在这一点上率先突破。
极限概念起自于对“过程”的观察。极限概念显示着过程中两个变量发展趋势的关联。自变量的变化趋势分为两类,一类是x →x0 ;一类是x →∞,
“当自变量有一个特定的发展趋势时,相应的函数值是否无限接近于一个确定的数a ?”如果是,则称数a为函数的极限。
“无限接近”还不是严密的数学语言。但这是理解极限定义的第一步,最直观的一步。
学习极限概念,首先要学会观察,了解过程中的变量有无一定的发展趋势。学习体验相应的发展趋势。其次才是计算或讨论极限值。
自然数列有无限增大的变化趋势。按照游戏规则,我们还是说自然数列没有极限。
自然数n趋于无穷时,数列1/n的极限是0;x趋于无穷时,函数1/x的极限是0;
回顾我们最熟悉的基本初等函数,最直观的体验判断是,
x趋于正无穷时,正指数的幂函数都与自然数列一样,无限增大,没有极限。
x趋于正无穷时,底数大于1的指数函数都无限增大,没有极限。
x →0+ 时,对数函数lnx趋于 -∞ ;x趋于正无穷时,lnx无限增大,没有极限。
x →∞ 时,正弦sinx与余弦conx都周而复始,没有极限。在物理学中,正弦y = sinx的图形是典型的波动。
我国《高等数学》教科书上普遍都选用了“震荡因子”sin(1/x)。当x趋于0时它没有极限的原因是震荡。具体想来,当x由0.01变为0.001时,只向中心点x = 0靠近了一点点,而正弦sinu却完成了140多个周期。函数的图形在 +1与-1之间上下波动140多次。在x = 0的邻近,函数各周期的图形紧紧地“挤”在一起,就好象是 “电子云”。
当年我研究美国各大学的《高等数学》教材时,曾看到有的教材竟然把函数y = sin(1/x)的值整整印了一大页,他们就是要让学生更具体地体验它的数值变化。
x趋于0时(1/x)sin(1/x)不是无穷大,直观地说就是函数值震荡而没有确定的发展趋势。1/x为虎作伥,让震荡要多疯狂有多疯狂。
更深入一步,你就得体验,在同一个过程中,如果有多个变量趋于0,(或无限增大。)就可能有的函数趋于0时(或无限增大时)“跑得更快”。这就是高阶,低阶概念。
考研数学还要要求学生对极限有更深刻的体验。
多少代人的千锤百炼,给微积分铸就了自己的倚天剑。这就是一套精密的极限语言,(即ε–δ语言)。没有这套语言,我们没有办法给出极限定义,也无法严密证明任何一个极限问题。但是,这套语言是高等微积分的内容,非数学专业的本科学生很难搞懂。数十年来,考研试卷上都没有出现过要运用ε–δ语言的题目。 研究生入学考题中,考试中心往往用更深刻的体验来考查极限概念。这就是
“若x趋于∞时,相应函数值f(x)有正的极限
*“若x趋于x0时,相应函数值f(x)有正的极限
这是已知函数的极限而回头观察。逆向思维总是更加困难。不过,这不正和“近朱者赤,近墨者黑”一个道理吗。
除了上述苻号体验外,能掌握下边简单的数值体验则更好。
若x趋于无穷时,函数的极限为0,则x的绝对值充分大时,(你不仿设定一点x0,当∣x∣>x0时,) 函数的绝对值恒小于1
若x趋于无穷时,函数为无穷大,则x的绝对值充分大时,( 你不仿设定一点x0 , 当∣x∣>x0时,) 函数的绝对值全大于1
*若x趋于0时,函数的极限为0,则在0的某个适当小的去心邻域内,或x的绝对值充分小时,函数的绝对值全小于1
(你不仿设定有充分小的数δ>0,当0<∣x∣<δ时,函数的绝对值全小于1 )
没有什么好解释的了,你得反复领会极限概念中“无限接近”的意义。 你可以试着理解那些客观存在,可以自由设定的点x0,或充分小的数δ>0,并利用它们。
关于我们|商务合作|小黑屋|手机版|联系我们|服务条款|隐私保护|帮学堂| 网站地图|院校地图|漏洞提交|考研帮
GMT+8, 2025-5-23 14:35 , Processed in 0.069778 second(s), Total 9, Slave 9(Usage:3M, Links:[2]1,1_1) queries , Redis On.
Powered by Discuz!
© 2001-2017 考研 Inc.